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Summary

• Carbon (C) and water cycles of terrestrial ecosystems are two coupled ecological
processes controlled partly by stomatal behavior. Water-use efficiency (WUE)
reflects the coupling relationship to some extent. At stand and ecosystem levels, the
variability of WUE results from the trade-off between water loss and C gain in the
process of plant photosynthetic C assimilation.
• Continuous observations of C, water, and energy fluxes were made at three
selected forest sites of ChinaFLUX with eddy covariance systems from 2003 to 2005.
WUE at different temporal scales were defined and calculated with different C and
water flux components.
• Variations in WUE were found among three sites. Average annual WUE was
9.43 mg CO2 g

−1 H2O at Changbaishan temperate broad-leaved Korean pine mixed
forest, 9.27 mg CO2 g−1 H2O at Qianyanzhou subtropical coniferous plantation,
and 6.90 mg CO2 g−1 H2O at Dinghushan subtropical evergreen broad-leaved forest.
It was also found that temperate and subtropical forest ecosystems had different
relationships between gross primary productivity (GPP) and evapotranspiration (ET).
• Variations in WUE indicated the difference in the coupling between C and water
cycles. The asynchronous response of GPP and ET to climatic variables determined
the coupling and decoupling between C and water cycles for the two regional forest
ecosystems.
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Introduction

In the terrestrial ecosystem, carbon (C) and water cycles
closely couple because they both exchange between biosphere
and atmosphere via the same pathway, namely the stomata. At
the stand and ecosystem scales, the variability of water-use
efficiency (WUE) reflects trade-off between water loss and C
gain in the process of plant photosynthetic C assimilation.
The WUE indicates water-use strategy among different species
or at different life stages of plants (Donovan & Ehleringer,

1991). At the ecosystem level, WUE can be used to quantify
the coupling between C and water cycles (Yu et al., 2004). To
predict the associated changes in productivity and distribution
of plant species, it is essential to understand how WUE of
different species change with climate (Xu & Hsiao, 2004).
However, the processes of water loss and C gain are very
complicated at the ecosystem level. It is difficult to accurately
measure and evaluate ecosystem WUE because current
observation methods are limited to obtaining only a certain
component of water and C fluxes. Eddy covariance techniques,
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which can measure CO2 and water vapor exchange between
ecosystems and atmosphere with a high time-resolution
(Wofsy et al., 1993), provide powerful tools to evaluate
ecosystem gross primary productivity (GPP), evapot-
ranspiration (ET) and WUE, and to measure their responses
to environmental change (Law et al., 2002; Huxman et al.,
2004).

The observations of FLUXNET can provide plenty of
information for studying the characteristics of ecosystem GPP,
ET and WUE, and their responses and adaptations to global
climate change (Baldocchi et al., 2003; Barr et al., 2006). Law
et al. (2002) showed that C assimilation increased linearly with
water loss under conditions without environmental stresses,
suggesting that ecosystem WUE was conservative if gas
exchange was controlled by stomata only. Huxman et al. (2004)
reported that at the sites with low mean annual precipitation
(MAP), efficient water use associated with growth rates of
individual plants was translated to high GPP and high WUE
at the ecosystem level. In comparison, at the sites with high
MAP, plants with high growth rates and strong competition
for other resources were favorably selected. Bert et al. (1997)
investigated the variations of intrinsic WUE during last century
based on the analysis of δ13C in tree rings of a western forest
ecosystem. They found that the WUE increased by 30%
between the 1930s and the 1980s mainly because of long-term
environmental changes, such as the continuous rise in
atmospheric CO2 concentration and in nitrogen deposition.
Saurer et al. (2004) obtained similar conclusion for the forest
in north Eurasia. They pointed out that the tendency to
maintain a constant ratio of intercellular to ambient CO2
concentration was the main reason for the increase in WUE
under enhanced CO2 concentration. Results by Beer et al.
(2007) provided additional relationships between WUE and
two ecosystem state properties: available soil water holding
capacity and leaf area index.

The climate in Asia differs from that in Europe and North
America because of the influence of eastern Asia monsoons
(Yu et al., 2006). As a result, some distinct regional characte-
ristics might be associated with the relationship between C
assimilation and water loss in eastern Asia forest ecosystems.
Unfortunately, to date, there has been little study of WUE
variations, seasonal patterns and their responses to the climate
change of forest ecosystems in eastern Asia. Zonal forest
ecosystems, from tropical to cold temperate, are distributed
along the north–south transect of Eastern China (NSTEC).
Comparing the WUE of these forest ecosystems will help
elucidate the ecosystem response and adaptation to the climate
change. In this study, three different forest sites of China-
FLUX located along the NSTEC were selected. The objectives
of the research were to analyse the WUE variability, compare
the seasonal variations of WUE among ecosystems, explore
the responses of GPP, ET and WUE to the seasonal and
interannual climate change, and examine the climate gradient
impacts on the spatial pattern of WUE of the forest ecosystems

in eastern China. Achieving these objectives should improve
our understanding of the mechanism underlying the coupling
of C and water cycles, which is of great importance in predicting
the effects of climate change on ecosystem C budget and water
resources.

Materials and Methods

Site descriptions

Experimental data were observed at three ChinaFLUX sites,
Changbaishan temperate broad-leaved Korean pine mixed
forest (CBS), Qianyanzhou subtropical coniferous plantation
(QYZ) and Dinghushan subtropical evergreen broadleaved
forest (DHS). The stand ages of these three sites were c. 200 yr,
21 yr and 100 yr, respectively. The sites are distributed from
north to south in eastern China, spanning wide ranges of
precipitation and temperature. The mean annual temperatures
are 3.6°C, 17.9°C and 21.0°C, and the average annual
precipitation are 695 mm, 1485 mm and 1956 mm for CBS,
QYZ and DHS, respectively. Table 1 provides extensive
descriptions of the sites.

Carbon and water fluxes in the three forest ecosystems were
measured from 2003 to 2005 with eddy covariance (EC)
systems consisting of open-path infrared gas analysers (model
LI-7500; Licor Inc., Lincoln, NB, USA) and a 3-D sonic
anemometer (model CSAT3; Campbell Scientific Inc., Logan,
UT, USA). A datalogger (model CR5000; Campbell Scientific
Inc.) recorded the EC signals at 10 Hz for archiving and
on-line computation of the turbulence statistics. All fluxes
were computed by block averaging over 30 min. Routine
meteorological variables, such as radiation, air temperature and
relative humidity, were measured simultaneously and contin-
uously. Soil temperature and soil moisture were also measured
with a thermocouple probe (105T; Campbell Scientific Inc.)
and a water content reflectometer (CS616; Campbell Scientific
Inc.), respectively. All the micrometeorological measurements
were recorded at 30-min intervals with dataloggers (CR10X
and CR23X; Campbell Scientific Inc.). More information on
the routine meteorological system are given in the Supple-
mentary Material, Table S1. Table 1 presents the observation
heights of different sensors. Detailed descriptions on
observation of the sites can also be found in Yu et al. (2006),
Wen et al. (2006) and Zhang et al. (2006).

Data processing and WUE calculations

Flux data processing Three-dimensional rotation of the coor-
dinate was applied to the wind components for avoiding the
effect of instrument tilt or irregularity on the airflow (Aubinet
et al., 2000). Correction was made for the effect of fluctuations
of air density on the fluxes of CO2 and water vapor (Webb
et al., 1980). Storage below the EC height was also corrected
(Hollinger et al., 1994).
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Spurious data were removed from the dataset if the instru-
ment performance and experimental condition were abnormal.
The problems were largely caused by rainfall, water conden-
sation or system failure (c. 20.1% of the half-hourly data).
Night-time fluxes with friction velocity u* less than 0.2 m s−1

were not used. Negative fluxes at night (i.e. apparent photo-
synthesis) were also taken out of the database. Gaps in the EC
dataset were filled using a look-up table method (Falge et al.,
2001a,b). Flux data processing is further described in the
Supplementary Material, Text S1.

Calculations of ecosystem GPP and WUE

Estimations of ecosystem GPP Net ecosystem CO2 exchange
(NEE), the balance between photosynthetic C assimilation
and C-releasing respiration, can be measured directly by EC
techniques. Negative NEE is called as net ecosystem produc-
tivity (NEP). Gross ecosystem primary productivity (GPP)
can be estimated by

GPP = NEP + Re = −NEE + Re Eqn 1

(Re is total ecosystem respiration). The Lloyd & Taylor (1994)
equation for the temperature-dependency of respiration is
usually adopted to estimate Re. However, according to the
results of Yu et al. (2005) and Wen et al. (2006), soil moisture

might also affect Re, especially for ecosystems suffering from
seasonal drought. Therefore, temperature and soil water
content were taken into account in determining Re in this study,

Eqn 2

Eqn 3

(Re,ref is the ecosystem respiration rate at reference temperature
(Tref); Q10 is temperature sensitivity of respiration; Ta is air
temperature (°C); Sw is soil water content; a, b, c and d are
fitted site-specific parameters in which b > 0 and d ≤ 0).

Definition and calculation of ecosystem WUE

In this study, WUE was defined as the ratio of GPP to
evapotranspiration (ET), in which GPP was estimated from
Eqn 1, and ET was measured directly by EC technique,

WUE = GPP/ET Eqn 4

Key processes that determine C transfer and storage in
forested ecosystems can vary over multiple temporal scales for
the changing canopy structure (Siqueira et al., 2006) in
different seasons. Thus, the ecophysiological implications of

Table 1 Description of site characteristics

Sites CBS QYZ DHS

Location 42°24′N, 128°05′E 26°44′N, 115°03′E 23°10′N, 112°34′E
Elevation (m) 738 102 300
Mean annual temperature (°C)a 3.6 17.9 21.0
Annual precipitation (mm)a 695 1485 1956
Predominant species Pinus koriaensis, Tilia 

amurensis, Acer mono, 
Quercus mongolica, 
Fraxinus mandshurica

Pinus massoniana Lamb, 
Pinus elliottii Engelm, 
Cunninghamia lanceolata Hook

Schima superba, Castanopsis 
chinensi, Pinus massoniana

Stand age (yr) c. 200 21 c. 100
Canopy height (m) 26 12 20
Leaf area index (LAI) 6.1 3.5 4.0
Leaf N content (%)b 1.91 ± 0.34 0.78 ± 0.45 1.72 ± 0.29
Atmospheric nitrogen deposition 
(kg N ha−1 yr−1)

17.63 20.72 38.4

Ozone concentration (×10−9, v : v)d 29 ± 0.25 21 ± 0.16 5 ± 0.14
Soil type Dark brown forest soil Red soil Lateritic red soil, yellow soil
Height of eddy covariance (EC) (m)c 40 39.6 27
Profiles of air temperature and humidity (m)c 2.5, 8.0, 22.0, 26.0, 

32.0, 50.0, 61.8
1.6, 7.6, 11.6, 15.6, 
23.6, 31.6, 39.6

4, 9, 15, 21, 27, 31, 36

Depth of soil temperature (m)c 0, 0.05, 0.1, 0.2, 0.5, 1 0.02, 0.05, 0.2, 0.5, 1 0.05, 0.1, 0.2, 0.5, 1
Depth of soil moisture (m)c 0.05, 0.2, 0.5 0.05, 0.2, 0.5 0.05, 0.2, 0.5

CBS, Changbaishan temperate broad-leaved Korean pine mixed forest; QYZ, Qianyanzhou subtropical coniferous plantation: DHS, Dinghushan 
subtropical evergreen broad-leaved forest.
aValues are the averages from 1985–2005.
bLeaf N content was measured by element analyzer (ThermoFinnigen).
cHeight and depth indicate the location of the sensors mounted.
dData source: database of Chinese Ecosystem Research Network (CERN).
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WUE estimated from Eqn 4 at different temporal and spatial
scales also vary. In this study, different concepts of WUE were
defined according to temporal scale.

Annual ecosystem WUE (WUEyr) is

WUEyr = GPPyr/ETyr Eqn 5

(GPPyr and ETyr are the accumulations of GPP and ET in a
whole year, respectively). WUEyr denotes the relationship
between ecosystem C assimilation and water consumption in
a given year. The reciprocal of WUEyr, namely the water
requirement coefficient, reflects the water cost of per unit C
assimilation at annual scale.

Vegetative season ecosystem WUE (WUEgs) is

WUEgs = GPPgs/ETgs Eqn 6

(GPPgs and ETgs are the accumulations of GPP and ET in
vegetative season, respectively). WUEgs expresses the relation-
ship between C fixation and water consumption during
vegetative season. The CBS forest ecosystem is a northern
temperate forest with obvious growing and nongrowing
seasons, while QYZ and DHS are two evergreen forests, where
there are no rigid division between growing season and non-
growing season. Therefore, we consider the growing period of
CBS (i.e. from May 1 to August 31) as vegetative season for
WUE comparison among the three forest ecosystems.

Daily ecosystem WUE (WUEdd) is

WUEdd = GPPdd/ETdd Eqn 7

(GPPdd and ETdd are the sum of GPP and ET for a whole day,
respectively). WUEdd expresses the relationship between C
fixation and water consumption during a day. The reciprocal
of  WUEdd reflects the water cost per unit C assimilation during
a day.

Daytime ecosystem WUE (WUEdt) is

WUEdt = GPPdt/ETdt Eqn 8

(GPPdt and ETdt are the sum of GPP and ET in the daytime,
respectively). To get rid of the data measured under stable and
neutral conditions, the data collected from 10:00 h to 16:00 h
were used to calculate WUEdt. The statistical value of WUEdt
excludes the contribution of night-time ecosystem respiration
to WUE, and can thus be considered as the ecosystem WUE
determined mainly by plant transpiration and photosynthesis.
WUEdt expresses the control of plant physiological processes
on the coupling between C fixation and water consumption
in ecosystem.

The maximum ecosystem WUE in daytime (WUEdmax) is

WUEdmax = GPPdmax/ETdmax Eqn 9

(GPPdmax and ETdmax are the maximum GPP and the
concurrent ET during daytime). WUEdmax should be
considered as the potential WUE for an ecosystem, which
could be used to show the control of plant stomatal behavior
and physiological activity to water use.

Statistical analysis

One-way anova with Fisher’s LSD test was performed to test
the difference in WUE of different forest types and timescales.
The relationship between GPP, ET and climatic variables
were fitted with linear, polynomial and exponential growth
equations. All analyses were conducted using SAS package.
Statistical significant differences were set with P < 0.05 unless
otherwise stated.

Results

Seasonal variations of environmental conditions

From the north to the south, the latitudinal span is c. 19°.
Large temperature and precipitation gradients exist among
CBS, QYZ and DHS sites (Fig. 1 and Table 1). The monthly
precipitation, mean air temperature and saturated vapor
pressure deficit (VPD) at QYZ and DHS sites were much
higher than those at CBS. The difference between the
maximum and minimum monthly mean temperature were
much less at QYZ and DHS sites than at CBS (Fig. 1).

The seasonal pattern of temperature was in good agreement
with that of precipitation at CBS (Fig. 1), that is, when the
maximum precipitation occurred in June and July air temper-
ature was also highest. Such coincident variations favored
high efficiency of ecosystem water use. By contrast, seasonal
distributions of precipitation and temperature were asynchro-
nous at QYZ and DHS sites. These two subtropical forest
ecosystems suffered from frequent seasonal drought (Fig. 1),
resulting in low efficiency of water use. At both sites, the pre-
cipitation decreased, to some degree, in July, whereas the air
temperature reached the maximum as VPD increased signifi-
cantly. As a result, the water consumption was much larger
than that of water supply, resulting marked decrease in soil
water content. Carbon assimilation and plant growth were
suppressed under this environmental stress.

Seasonal variations of ecosystem GPP, ET and WUEdd

The seasonal variations of GPP, ET and WUEdd for the three
forest ecosystems from 2003 to 2005 are shown in Fig. 2. The
GPP and ET data were 5-d averages. Among the three sites,
the peak value of ecosystem GPP was largest at CBS and
smallest at DHS. Evapotranspiration was greatest at QYZ.

At CBS, GPP and ET varied with temperature, showing
obvious seasonal variations. The values of GPP and ET attained
the maximum in July and August, respectively. During the
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dormancy period (from November 15th to March 15th,
deduced from temperature variation), GPP was close to zero.

Plant photosynthesis and respiration continued at QYZ
and DHS even in the coldest month (still > 0°C) of the sites.
Ecosystem GPP and ET at these two sites reached the maximum
in vegetative season, but amplitudes of the variations were not
as large as those at CBS. The seasonal drought, especially in
the summer of 2003, had significant effect on the GPP and
the ET (Fig. 2). The minimum GPP and ET occurred in
January and February at QYZ, but occurred in March at
DHS.

The WUEdd at CBS had a distinct seasonal variation
pattern: it was nearly constant during the vegetative season
and almost zero beyond the vegetative season (Fig. 2). This
pattern suggests that GPP and ET were affected by meteoro-
logical conditions in similar ways. However, at QYZ and
DHS, WUEdd was more than zero in winter, and fluctuated
greatly during the vegetative season. Seasonal variations of
WUEdd differed from those of GPP and ET, with the maximum
in winter and the minimum in the peak vegetative season.
Reichstein et al. (2002) found a similar seasonal variation of
WUE in three Mediterranean evergreen forest ecosystems,
and they attributed it to the drought effects.

At QYZ, ET in 2005 was much less than that in 2003 and
2004, but GPP did not differ much among the three years.
Precipitation mainly occurred in May and June in 2005 at
QYZ. Although there was little rain in July and August, solar
radiation in 2005 was much less than that in 2003 and 2004.
Cloudy and overcast weather conditions might have reduced

the incident radiation in 2005 and have decreased the latent
heat flux. Consequently, ecosystem WUEdd at QYZ was larger
in 2005 than in 2003 and 2004.

Comparisons of WUE among the three sites

The GPPyr averaged from 2003 to 2005 was 5.70 ± 0.41 kg
CO2 m

−2 yr−1 at QYZ, 4.72 ± 0.40 kg CO2 m
−2 yr−1 at DHS

and 4.52 ± 0.51 kg CO2 m
−2 yr−1 at CBS. It is obvious that

the GPPyr at QYZ was significantly higher than at the other
two sites. The 3-yr average of ETyr was 685.10 ± 29.28 kg
H2O m−2 yr−1 at DHS, 632.70±144.45 kg H2O m−2 yr−1 at
QYZ, and 480.54 ± 22.95 kg H2O m−2 yr−1 at CBS. The ETyr
at CBS was significantly smaller than at DHS (Fig. 3a,b).
During the vegetative season, GPPgs significantly differed
among the three sites, while no obvious difference in ETgs
among the three sites (Fig 3a,b).

For the same site, percentage of the GPP in the vegetative
season to the GPP in the whole year (GPPgs/GPPyr) was close
to that of ET (ETgs/ETyr). However, there were significant
differences among the three ecosystems. The values were c.
70% in CBS, c. 50% in QYZ and c. 40% in DHS (Fig. 3a,b).

The WUE at different temporal scales represents the inte-
grated effects of various ecophysiological processes on ecosystem
water use. The average WUEyr for CBS, QYZ and DHS were
9.43 ± 1.28 mg CO2 g−1 H2O, 9.27±1.77 mg CO2 g−1 H2O
and 6.90 ± 0.69 mg CO2 g−1 H2O, respectively. The average
WUEgs of these sites were 10.47 ± 1.53 mg CO2 g−1 H2O,
8.48 ± 2.39 mg CO2 g−1 H2O and 6.06 ± 0.62 mg CO2 g−1

 

 

 

Fig. 1 The seasonal variation of precipitation 
(P, columns), soil water content (SWC; closed 
squares, open circles and triangles are SWC 
at depths of 5 cm, 20 cm and 50 cm, 
respectively), air temperature (Ta, open 
squares) and saturated vapor pressure deficit 
(VPD, closed squares) at CBS (Changbaishan 
temperate broad-leaved Korean pine mixed 
forest), QYZ (Qianyanzhou subtropical 
coniferous plantation) and DHS (Dinghushan 
subtropical evergreen broad-leaved forest) 
sites from 2003 to 2005.
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H2O, respectively (Fig. 3c). Except for WUEdmax, WUE at
other temporal scales in the deciduous forest ecosystem (e.g.
CBS), in agreement with the results of Law et al. (2000), were
significantly higher than those in the subtropical evergreen
forest ecosystems (e.g. DHS) (P < 0.05) (Fig. 3c). In addition,
there was significant difference in WUEyr, WUEdd and WUEdt
between the two subtropical sites (QYZ and DHS), partly
owing to the differences in stand age (Freyer, 1979; Francey
& Farquhar, 1982; Bert et al., 1997) and dominant species
(broadleaved vs coniferous).

Discussion

Implications of different WUE definitions

The different WUE terms defined in this study deal with
different characteristics of the effects of ecosystem respiration
on ecosystem WUE and provide important information for
evaluating the effects of water resources on the function of
ecosystem C sink/source and for predicting ecosystem
productivity under changing climate. WUEdmax refers to the
ecosystem WUE under optimum conditions, which is mainly

controlled by plant stomata, and could be considered as the
potential WUE of an ecosystem. The difference between
WUEyr and WUEgs or between WUEdd and WUEdt resulted
from ecosystem respiration in nonvegetative season or at night,
because assimilated C was partly consumed in respiration.

The reciprocal of WUE (i.e. ecosystem water requirement
coefficient) represents water consumption per unit C assimi-
lation. At CBS, fixation of 1 g of CO2 needs 106 ± 15 g H2O
based on the whole-year average, and 100 ± 15 g H2O based
on the vegetative season average. At QYZ, the values were
108 ± 19 g H2O and 111 ± 30 g H2O, respectively, and they
were 150 ± 15 g H2O and 158 ± 18 g H2O at DHS, respec-
tively. Variations that existed among different forest ecosys-
tems and among different years provided useful information
for evaluating ecosystem water consumption during the process
of C assimilation.

Fig. 2 The seasonal variation of gross primary productivity 
(GPP, grey line), evapotranspiration (ET, dashed line) and daily 
water-use efficiency (WUEdd, black line) at CBS (Changbaishan 
temperate broad-leaved Korean pine mixed forest), 
QYZ (Qianyanzhou subtropical coniferous plantation) and DHS 
(Dinghushan subtropical evergreen broad-leaved forest) sites from 
2003 to 2005. Lines are 5-d running average. Fig. 3 Comparison of mean values of gross primary productivity 

(GPP), evapotranspiration (ET) and water use efficiency (WUE) for 
different timescales at CBS (Changbaishan temperate broad-leaved 
Korean pine mixed forest, open columns), QYZ (Qianyanzhou 
subtropical coniferous plantation, grey columns) and DHS 
(Dinghushan subtropical evergreen broad-leaved forest, hatched 
columns) sites from 2003 to 2005. Different letters among three sites 
mean significant differences or the other way round (LSD comparison).
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Compared with the results reported in the literature,
WUE values in this research were in the normal range (i.e.
2.4–19.8 mg CO2 g−1 H2O) (Law et al., 2000, 2002; Zeller &
Nikolov, 2000; Berbigier et al., 2001; Mahrt & Vickers, 2002;
Winner et al., 2004; Ponton et al., 2006). The Supplementary
Material (Table S2) briefly summarizes the results of different

studies. When compared with forests of the same latitudinal
range, the WUE of CBS forest was similar to that of Central
Oregon forest, USA (Law et al., 2000), but much higher
than those of Bordeaux, France (Berbigier et al., 2001), and
Glacier Lakes Ecosystem Experiments Site (GLEES, WY, USA)
Zeller & Nikolov, 2000). The large variations of WUE among
different types of forest ecosystems as reported in the litera-
ture are mainly attributable to the differences in climate
conditions and dominant species.

Effects of climatic variables on the coupling between 
GPP and ET

There was a strong correlation between GPP and ET, and the
slope of the relationship could be considered as an indicator
of ecosystem WUE (Law et al., 2002). The relationship
between GPP and ET for temperate forest ecosystem (e.g. CBS)
was obviously different from those of subtropical forest
ecosystems (e.g. QYZ and DHS) at different temporal scales
(daily, daytime and the moment of GPP maximum at
daytime) (Fig. 4). At CBS, GPP was significantly correlated to
ET at different temporal scales (Fig. 4a), showing a strong
linear relationship between C gain and water loss. The similar
patterns of ET and GPP variations led to relatively constant
WUE throughout the vegetative season. However, the relation
was nonlinear for the subtropical forests (Fig. 4b,c), suggesting
that the coupling between GPP and ET was weak under the
changing environmental conditions as analysed later.

Understanding the effects of climate change on forest
ecosystem productivity, C sink/source functions and water
balance is useful to analysis of the responses of GPP and ET
to climatic variables in various forest ecosystems. Figure 5
compares the responsive characteristics of GPP and ET to air
temperature (Ta), VPD and net radiation (Rn) at the three
sites. It is shown that the responses of GPP and ET to three
meteorological factors were very different between the two
zonal forest ecosystems. The different responses presumably
led to the coupling and decoupling between GPP and ET.

At CBS, both GPP and ET increased with Ta, VPD and Rn
(Fig. 5a–c). These relationships suggest that the seasonal
variations in climatic variables drove photosynthesis and
evapotranspiration with approximately equal strength and,
consequently, the coupling between GPP and ET was main-
tained at a high level all the time. At QYZ and DHS, GPP and
ET responded to climatic variables differently. The relations
between GPP and meteorological factors (Ta, VPD and Rn) were
fitted with quadratic function (Fig. 5d–i), whereas those
between ET and meteorological factors were fitted with
linear or exponential growth equation. At QYZ, GPP was
obviously depressed when Ta > 25°C, VPD > 1.75 kPa and
Rn > 580 W m−2. At DHS, the temperature value for GPP
depression was 21°C.

Asynchronous responses of GPP and ET to changing envi-
ronmental variables determined the relationship between

Fig. 4 The relationships between gross primary productivity (GPP) 
and evapotranspiration (ET) for different timescales at CBS 
(Changbaishan temperate broad-leaved Korean pine mixed forest), 
QYZ (Qianyanzhou subtropical coniferous plantation) and DHS 
(Dinghushan subtropical evergreen broadleaved forest) sites from 
2003 to 2005. GPPdd (squares) and GPPdt (circles) are the averages 
of whole-day and daytime, respectively. GPPdmax (triangles) is the 
maximum GPP during daytime. Evapotranspiration includes ETdd, 
ETdt, and ETdmax. Here the value of GPP was aggregated in classes 
of increasing ET.

lenovo
高亮
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GPP and ET, as well as the reduced WUE in the vegetative
season. For the two subtropical forests, the increasing rate of
ET was much larger than that of GPP under high temperature,
strong radiation and low humidity conditions in summer.
Although the responsive characteristics of GPP and ET to
environmental factors were very similar between the two
subtropical forests, the extent of their responses to extreme
climatic events was different.

Seasonal drought, usually occurring during the vegetative
season, is a typical climate characteristic in subtropical regions
of China (Fig. 1 and the Supplementary Material Fig. S1).
During the drought period transpiration is reduced by stomatal
control and affects leaf energy balance. Consequently, there is
a rise in leaf temperature, promoting photorespiration, affecting
electron transport and carboxylation capacity, and thereby
potentially reducing C gain and WUE (Harley & Tenhunen,
1991; Baldocchi, 1997).

Effects of climate gradients on the spatial pattern of 
ecosystem WUE along NSTEC

Understanding the spatial pattern of WUE and its environ-
mental control mechanisms is of great significance for
estimating the effect of water condition change on ecosystem
C budget and for evaluating the spatial pattern of water
carrying capacity of ecosystems and its variation under changing
climate. A comparison of different ecosystems along a terrestrial
transect driven by certain environmental gradients can provide
a useful approach to spatial analyses of ecosystem functioning
(Han et al., 2006). The three forest ecosystems located along
the NSTEC spanned a wide range of environmental conditions.
Although they may not represent all types of ecosystems in
eastern China, this study provides valuable information for
investigating the effects of climate change on the spatial
pattern of ecosystem WUE.

Fig. 5 The relationship between gross primary productivity (GPP, squares), evapotranspiration (ET, circles) and climatic variables (air temperature 
(Ta), saturated vapor pressure deficit (VPD) and net radiation (Rn)) at CBS (Changbaishan temperate broad-leaved Korean pine mixed forest, 
a–c), QYZ (Qianyanzhou subtropical coniferous plantation, d–f) and DHS (Dinghushan subtropical evergreen broad-leaved forest, g–i) sites from 
2003 to 2005. Half-hourly data of GPP and ET were aggregated in classes of increasing Ta, VPD and Rn.
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Air temperature and precipitation increased but ecosystem
WUE decreased from north to south along NSTEC (Table 1
and Fig. 3). Figure 6 showed the relationship between WUEyr,
WUEgs, annual precipitation (AP) and mean annual temper-
ature (ATa). Both WUEyr and WUEgs decreased linearly with
increasing AP and ATa, but the relations were not significant
at the level of P < 0.05 (Fig. 6). If the WUE of QYZ in 2005
was excluded, the relations became significant at P < 0.05
(Fig. 6). However, further exploration is needed to clarify the
difference in the relationships between 2005 and other years.
In addition, compared with WUEyr, the correlation between
WUEgs and climatic variables was more significant, likely owing
to the weaker correlation between respiration and evaporation
than between C assimilation and transpiration.

Based on the observed results, WUE can be described as a
function of AP and ATa,

WUEyr = 10.249 + 0.001AP − 0.109ATa, 
R2 = 0.61, P = 0.097

WUEgs = 11.742 + 0.00003AP − 0.266ATa, 
R2 = 0.85, P = 0.008

It is obvious that ATa and AP were the main factors
controlling the spatial pattern of WUE for the forest
ecosystems in eastern China, especially in vegetative season.
The relationships turned out to respond for over 85% of the
variations of ecosystem WUE. Therefore, it might be an
effective way to predict and evaluate WUE and water con-
sumption per C fixation of ecosystems by ATa and AP. This
result needs verification by long-term observation across geo-
graphical sites.

In addition to meteorological variables, a potentially signif-
icant component of climate, such as air quality in terms of
ozone and deposition of SO2 and nitrogen, can significantly
affect GPP and WUE. McLaughlin et al. (2007a,b) reported
that exposure to ozone and ozone interactions with climate
were main contributors to the observed decrease in plant
growth and increase in water use of mature forest trees. We
presume that ozone might also be a factor that influenced the
spatial pattern of WUE, based on the data collected for the
study sites. Mean ozone concentration at DHS ranged from
29 ± 0.25 × 10−9 v : v, significantly higher than that the value
(5 ± 0.14 × 10−9 v : v) at CBS. A relatively high ozone
concentration can also have a contribution to the lower WUE
at DHS. Furthermore, the atmospheric nitrogen deposition
increased from 17.63 to 38.4 kg N ha−1 yr−1 from north to
south along the NSTEC (Table 1). Our results showed that
air nitrogen deposition can increase nitrogen content and
WUE of leaf to certain extend, for instance, at CBS. However,
it  noteworthy that an excessive input of reactive nitrogen
(> 25 kg N ha−1 yr−1) could destroy plant organs and decrease
WUE (e.g. at DHS) (Li et al., 2004).
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Fig. 6 The variations of vegetative season 
ecosystem water-use efficiency (WUEgs) and 
annual ecosystem WUE (WUEyr) with 
increasing annual precipitation (AP) and mean 
annual temperature (ATa). Sites were: CBS 
(Changbaishan temperate broad-leaved 
Korean pine mixed forest, squares), QYZ 
(Qianyanzhou subtropical coniferous 
plantation, circles) and DHS (Dinghushan 
subtropical evergreen broad-leaved forest, 
triangles). The inset circle is the WUE of QYZ 
in 2005.
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The following supplementary material is available for this
article online:

Fig. S1 Figure verifying the severe seasonal drought in QYZ
in 2003

Table S1 Table with information of routine meteorological
system

Table S2 List of WUE reported in the literature

Text S1 Methods for flux data processing

This material is available as part of the online article from:
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(This link will take you to the article abstract).
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